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Aperture Excitation of a Wire
in a Rectangular Cavity

DAVID B. SEIDEL, MEMBER, IEEE

Abstract-The problem of determining the currents excited on a wire

enclosed within a rectangular cavity is considered. The wire and cavity
interior are excited by electromagnetic sources exterior to the cavity which
couple to the cavity interior throngh a small aperture in the cavity waft. It
is assumed that the wire is thin, strsigh~ and oriented pcrpendicufar to one
of the cavity wafls. An inte~al equation is formulated for the problem in
the frequency domain using eqoivafent dipole moments to approximate the
effects of the aperture. This integrsf equation is then solved rmmericsffy by

the method of moments. The dyadic Green’s furrctiom for this problem are
difficult to compute numerically; consequently, extensive nmnerfcaf analy-

sis is necessary to render the solution tractable. SsmpIe rmrnerieaf remfts

are presented for representative configurations of cavity, wire, and aper-

ture

1. INTRODUCTION

A N INVESTIGATION has been undertaken of the
problem of a wire inside a cavity which is excited by

an external source. The effects of this external source are

coupled to the cavity interior and wire through an aper-

ture in the cavity wall. The currents excited upon the wire

and the fields within the cavity are to be determined. This

boundary-value problem is an idealization of a wire in

some metal enclosure. As examples, the wire may be

inside the shielding or housing of an electronic or
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mechanical unit, or it might simply pass from one metal

partition to another through a region which is essentially

empty.

Previously, the shielding effects of infinite cylindrical
structures have been treated often, i.e., [1], [2]. Recently,

the problems of penetration through an aperture into a

spherical cavity [3] and into a cylindrical cavity [4] also

have been considered. However, the author is not aware

of any previous work which treats the subsequent interac-

tion with scatterers (such as wires) within a cavity.

II. FORMULATION OF PROBLEM

For purposes of this problem, consider a perfectly con-

ducting rectangular cavity as shown in Fig. 1. One corner

of this cavity is located at the origin of a Cartesian

coordinate system. The dimensions of the cavity are de-

noted by a, b, and c, in the x, y, and z directions,

respectively. Within this cavity, there is a perfectly con-

ducting, round, thin wire of radius r (r<<A) which is

assumed to be parallel to the z axis. The ends may or may

not be attached to either or both walls of the cavity.

One of the walls of the cavity is perforated by a small

aperture whose center is located at 7.=(x y z ). Thea, a, a
exterior region to which the aperture couples the cavity

interior may be of two different types. The cavity may be

located behind an infinite, perfectly conducting, planar

screen such that the cavity wall containing the aperture is

a portion of the infinite screen. Alternatively, the cavity
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!’ {APERTURE

Fig. 1. Geometry for aperture-perforated rectangular cavity with inter-
ior wire.

may be situated in a free-space environment. In either

case, the excitation for the problem is provided by sources

in the exterior region.
Finally, it is assumed that the medium in both the

interior and exterior regions is homogeneous and isotropic

and is characterized by (c, U) where 6 can be complex for a

lossy medlium. It is assumed that the problem is time

harmonic with angular frequency ~, and the factor &f

has been suppressed throughout.

In order to formulate an integral equation for this

problem, it is necessary to know the Green’s functions for

the potentials and the fields within the interior, or cavity,

region. These Green’s functions are dyadic in nature and,

as one would expect, are singular in the source region. (As
a matter of notation in what follows, an uppercase G

denotes a dyad due to an electric current source; simi-

larly, a lowercase g denotes a dyad due to a magnetic

current source. The subscript A, F, e, or h denotes the

particular Potential or field which is given by the dyad.)
The dyadic Green’s function for the magnetic vector

potentiai is defined by

(v’+ k’):A(?,?’)= - ia(r- F’)

fix(k’;+ Vv)-:- =0, on S

where k is the wavenumber of ~he homogeneous,

(la)

(lb)

isotropic

medium of the cavity interior, ~ is the identity dyad, and i?

is a inward-directed unit normal vee%or on S where S is

the surface of the cavity. This Green’s dyad has been

derived by Tai and Rozenfeld [5] in terms of the vector——
wave functions L, k?, and ~ and is given as a matrix by

(CC), (SS)Y(SS). = cos k.x cos kXx’ sin kyy

. sin kYy’ sin kz.z sin kzz’, etc.

and

Ei=
(

1, i=o

2, i#O.

—
Once ~~ has been determined, the Green’s clyads for

the electric and magnetic fields due to an electric current

source can be found. They are defined by

(3)

for the electric field and

ijh=vx&-- (4)

for the magnetic field. In matrix forma ~e and ~h can be

obtained by simply operating upon ~~ as prescribed by

(3) and (4). It should be noted that this result for (7, agrees

with that derived by Tai and Rozenfeld [5] directly using

the vector wave functions. It also agrees with a similar

result obtained by Rahmat-Samii [6] if a minor sign error

in [6, (28)] is corrected.

It now remains to determine the dyadic Green’s func-

tion for the electric vector potential and its related field

dyads. Consider the Green’s dyad for the electric vector

potential defined by

—
fi.gF=() 1>on S. (5b)

fixvx&?=o

Rahmat-Samii [6] has obtained a solution for & It is

given in matrix form by

1
(Ss)x(cc)y(cc)z o ()

o 1(cc)x(~~)y(cc). o .
0 0 (cc)x(ccM~~)z

(6)

Again the sigg error in [6, (26)] has been corrected.

Now that ~F is determined, the dyads for the electric

and magnetic fields due to a magnetic current source can

be defined by

je=–vxjF (7)
—.

[

(cc)x(~.f)y(.$~)z o 0

eA’J- 5 em.fnq
o (~~)x(cc)y(~~)z

abc m,~, 1=0 K:nl — k’
I

(2))

o 0 (Ss)x(ss)y(cc),

where
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and

If ~. is w~itten in matrix form, it is found that

ge(p, ~’)= – ~~(f’, 7) where the tilde denotes the transpose

of the dyad.

Before proceeding with the formulation of the integral

equation, it is worthwhile to consider a few of the general

properties of these dyadic Green’s functions. Probably the

most apparent property is that each component of each

dyad is in itself a triply infinite Fourier sum. Any one of

the sums can be performed analytically using one of the

following relationships:

s+-# a
sin k%x sin kXx’ =

2a sinh au
x

. sinh ax< sinh a(a – x>) (9a)

50* a
COS kXx COS kXx’ =

a sinh au
x

“ cosh ax< cosh a(a – x>) (9b)

v= a
cos kXx< sin kXx> =

rn=l k~+a2 2 sinh au

.cosh ax< sinh a(a – x>) (9c)

5,& –a
sin kXx< cos kXx> =

x
2 sinh au

. sinh ax< cosh a(a – x>) (!M)

where

kX=~ x<= min (x,x’)
a

x> = max (x, x’), O<xandx’<a.

It should be noted that there can be no doubt as to the

completeness of the expansions for these dyadic Green’s

functions. This is because the dyads for the potentials are

each comprised of the solutions to three scalar equations,

for which completeness is known. The field dyads are also

necessarily complete, being related to the potential dyads

simply by differential operators. Term-by-term dif-

ferentiation of the potential dyads as indicated by (3), (4),

(7), and (8) is valid when 7+7’ [7]. When 7= 7’, the series

for both the potential and field dyads are necessarily

divergent.

Finally, note that the effect of a differential operator on

each term of any one of the sums is to introduce a

multiplicative factor of m, n, or 1 in the numerator. This

will slow the rate of conve~ence of the series. Thus, for

IF– FI #O, components of ~. Lnd FF will exhibit the most

rapid convergence, whereas ~e and & which are con-

structed using the second-order differential operator V V.,

will exhibit the slowest convergence.

SOURCE

D

‘?

b<’

WIRE

APERTURE r

Fig. 2. Equivalent interior problem.

In order to formulate the integral equation for this

problem, one applies the equivalence theorem and small-

aperture theory [8]. Thus the wire is replaced by an

equivalent surface current density (~~) and the aperture by

equivalent electric and magnetic dipoles (Pe and ~~, re-

spectively) radiating in the presence of the shorted aper-

ture. This equivalence is depicted in Fig. 2. Note that in

this equivalent problem one has a cavity whose interior is

entirely homogeneous and isotropic and is driven by the

unknown sources ~,, Fe, and ~~. Thus the fields in the

cavity may be obtained by simply taking the scalar prod-

ucts of the appropriate dyadic Green’s functions and these

sources and integrating over the volume of these sources.

Now the integral equation is obtained by enforcing the

boundary condition that the tangential electric field must

vanish on the wire surface.

Since the wire is thin, only the axial component of the

wire current need be considered, which can be assumed to

have negligible circumferential variation and to vanish at

an unattached end of the wire. Furthermore, it is

sufficient to enforce only the condition that the axial

component of the electric field vanish on the wire surface.

With these assumptions one obtains the integral equation

(lo)

for ? on the wire surface where

(11)

and

is the electric field produced by the aperture dipoles. In

(10) I,(z’) = 2nrYz(z’) is the wire current and q = ~ .

Note that if (1 O) can be inverted, a solution for 1= will

be obtained. However, it should be remembered that ~

contains ~, and ~~, which still must be specified. Toward

that end consider an infinite, perfectly conducting screen

at z = O which separates two half spaces of the same

properties (p, c). This screen is perforated by a small

aperture centered about the point (O,O,O). If the aperture
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is sufficiently small and 7 is sufficiently far from the

aperture, then the fields at ? due to the aperture can be

approximated by the radiation from an electric dipole

with moment P= and a magnetic dipole with moment ~~

located at (0,0,0) which radiate in the presence of the

unperforated screen.

The moments of the electric and magnetic dipoles for

the right half space (z> O), which are located at (O,O,0+),

are given by

Fe= 6ae(E:-@)– E:+(O)); (13a)

and

Pm=– iim.(m-(o) -w+(o)) (13b)

where (EC –, ~ – ) are the short-circuit fields in the

left half space, that is, the fields in left half space in

the presence of the unperforated screen. Similarly,

(~+, ~’) are the short-circuit fields in the right half
space. The electric polarizabilit y ae and the magnetic

polarizability ~~ relate the specific excitation to the mo-

ments for a given aperture. Polarizabilities are available in

the literature [9]–[11 ] for several aperture shapes. It

should be noted that, where this small-aperture theory is

based upon an aperture coupling two half spaces, in the

actual problem of interest the interior region is a rectangu-

lar cavity and the exterior region may or may not be a

half space.

First, consider the exterior region. Suppose the cavity is

behind an infinite screen, such that the exterior region is

actually a half space. Then the short-circuit exterior fields

can be determined from a knowledge of the incident field

by application of physical optics. However, if the cavity is

not behind a perfectly conducting screen, it is necessary to

determine the short-circuit fields on the exterior surface of

a rectangular box scatterer. This problem has been solved

numerically by Tsai, Dudley, and Wilton [12]. Since the

short-circuit fields are related to the surface current and

charge by ~,= ix~ – and q,=@ ~ –, these values

could also be provided by experimental measurements of

surface charge and current densities. Note that

(~-, %-) and (=+,~+) have been defined for the
problem of interest to be the short-circuit fields in the

exterior and interior regions, respectively. For the re-

mainder c~fthis paper it will be assumed that (@c –, ~ – )

are known.

Now consider the interior region of the problem as

illustrated in Fig. 2b. The fields (~+, ~ + ) are those

which are scattered back into the aperture by the wire and

the walls of the cavity. This can be ascertained by apply-

ing image theory to the cavity interior to obtain an equiv-

alent half-space problem and then properly identifying

the imaged sources [13]. It turns out, however, that for

most cases these fields are negligible when compared to

the exterior short-circuit fields and consequently can be

disregarded. Only in situations where the cavity is very

near resonance or the aperture is very near the wire or an

adjacent cavity wall might those fields have significance.

111. NUMERICAL SOLUTION

Now that the integral equation (10) has been olbtained,

one must find its solution numerically. An effective tech-

nique for obtaining such a solution is the method of

moments [14]. In this method, given the linear operator

equation Lu = f, one can approximate the unknown u by a

linear combination of a finite set of expansion functions

{u,} with unknown coefficients {a,}. Then, by choosing a

set of testing functions { WP} and defining an appropriate

inner product, one can obtain the following matrix equa-

tion from the original operator equation:

g (wP,Lu,)a, =<wp,f), p=lq2,. ... N.
~=1

It has been shown [15] that for integro-differential

equations in the general form of (10), an efficient choice

of expansion and testing functions is that of pulse func-

tions and piecewise-sinusoidal functions, respectively. The

utility of this choice is that it requires only the computa-

tion of the integral portion of the operator and thus

eliminates the necessity of the subsequent computation of

the differential portion of the operator.

The only difficulty remaining is the computation of the

elements of the matrix equation. First. consider the com-

putation of the various Green’s functions in (2)-(4) and

(6)-(8) when ?#F’. As noted previously, each of these

Green’s functions can be reduced from a triple sum to a

double sum which can be shown to be exponentially

convergent for 17– P’1# O. Indeed, the asymptotic series

associated with any one of these exponentially convergent

series is of the form

~–k, [z–z’l

sa~= ~ f(m,n)~—
rn,n c

(14)

where k?= (mn/a)2 + (n~/b)2, a = O, 1,2, and f(m, n) is a

nonexponential function of m and n. Numerical] y, it is a

good general rule to reduce the triple sum in such a way

as to produce the double sum with the most rapid ex-

ponential convergence. Note that because this conver-

gence goes as 17– Fl, as one attempts to make this comp-

utation nearer and nearer the source, the series will

become more and more poorly convergent. Thus one

should expect to reach a point such that for IT – F I less

than some minimum value (&), numerical computation

of the sum in this fashion becomes unfeasible.

Due to the exponential convergence in the asymptotic

series, one would expect an efficient ordering of terms to

be in order of increasing kC. This takes advantage of the

exponential convergence as well as the kC in the de-

nominator. At this point, it is useful to partition the m–n

plane with successive curves [16]. If the partial sum of all

terms lying between two successive curves is called sg,

then the double series can be converted into the single
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series of the form

s= g Sq.
q=l

By the proper selection of these curves, the most efficient

ordering of terms can be determined. For this problem

such a choice would be that of ellipses with semiaxes

proportional to a and b. Note that for such a choice, each

successive partition contains terms for which kc is larger

than in the preceding partition. Also note that since the

sum of terms in the qth partition is the qth term of a single

infinite series, methods used for determining the conver-

gence of single series can be applied.

It should be noted that extensive numerical testing

demonstrated that for cavities with dimensions on the

order of a wavelength A, the Green’s functions could

be easily obtained for values of IF– P’1 greater than A/20

(& =A/20). Computations at even smaller values of lF–
7’I are not impossible but rather more and more time

consuming.

Another computational difficulty is the evaluation of

the integral of the kernel (11) over the qth pulse-expansion

function of width A as given by

41) =f-q%jz’)dz’

where z~ is the centerpoint of the expansion function, Aq

is the interval (z~ – ~, .z~+ $), (xc,yC) is the location of the

center of the wire, and 7P= (XC+ r cos @, yC+ r sin @,ZP) is

a point on the wire surface such that ZP is the centerpoint

of the pth testing function. When p = q, the integrand G~==

of the integral over the tubular wire surface segment

diverges at ~ = f’. Even for p #q, if p is near q, then the

integrand w1ll converge poorly.

It is now useful to apply the reduced kernel approxima-

tion to (1 1), that is, assume that the current resides at the

center of the wire rather than upon its surface. This

approximation has been used successfully for wires in free

space, and, since the wire is thin and the cavity kernel and
free-space kernel differ only by a smooth, homogeneous

solution to (1a), the approximation is correspondingly

valid here. Note that by using this approximation, FP#r’

for all F’.

Using G~zz from (2) (reducing it to a double sum by

(9b)), applying the reduced kernel approximation to (1 1),

and using a hyperbolic trigonometric identity, one can
express (11) as the sum of two terms by

K(~,z’) = S(lzp – Z’1) + S(zp + z’) (15)

where

q /3)=: ~ C“;w:;:)F(XC,,YC)
m,n=l c

Z=kz+$+z
Yc x

and

F(XC,YC) = sin kXxC sin kXxP sin kYyCsin kYyP.

Because of the exponential convergence, the series can be

integrated term-by-term [7], and thus one obtains

A4(~p)= Q(lzp–zql) + Q(zp+zq) (16)

where

and where P(~) is the indefinite integral of S(~) given by

m sinh y.(c– ~) F(xc,yc). (17)

P(B)= – ~ ~,~=1 y: sinh 1’.’

Thus, if ( 17) can be evaluated for ~ >0, then zf~(~) can be

evaluated on the wire using the reduced kernel.

It is interesting to observe that if the centerpoints of the

expansion and testing functions coincide and are uni-

formly spaced along the wire, (16) implies that the imped-

ance matrix will be the sum of the two matrices, one a

Toeplitz matrix and one a Hankel matrix. This has the

pleasant effect of substantially reducing the matrix fill

time.

Note that asymptotically P is of the following form:

Because the hyperbolic sine is an odd function, P(2c – /?)

= – P( ~). Thus for /3 near zero or near 2c, poor conver-

gence is expected. However, from a numerical standpoint
there exists a /30> O such that for & < B < 2C – Po, P(~)

can be calculated using the techniques described previ-

ously for (14).

For the special case when ~= O (or 2c), one can analyti-

cally perform one of the sums in (17) using (9a). The

resulting singie sum is poorly convergent. However, its

convergence can be improved by removing its asymptotic

series termwise using the known sum formulation [17]

* e–n’z——cosnh=~– ~ln(cosh x–cos A)–~ln2,
~=1 n

Thus one obtains

P(0) = – ~ ~ sin kXxr sin kXxC
~=1

“[sinh y~< sinh y~(b –Y>) 1 e-ma

———

y~ sinh ybb 2 kX 1
–&ln

(

cosh a – COS&

cosh a – COS& )

where a = mlyr —yC//a, 81 =~1% — xc I/a, ~,= 7r(xr +

xC)/ a, and y;= k: – k2. Numerically, this sum is rapidly

convergent for nonvanishing wire radius r.

It is known that the reduced kernel (15) must contain

the singular portion of the free-space reduced kernel plus
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a smooth homogeneous function. Thus 5’( /3) must also

contain that singularity. The functions $(z) and +,(z) are

defined as the integrals of S( /3) and the singular portion

of the free-space reduced kernel, respectively:

+(z) “ ~’s(/3)d/3= P(z) - P(o)

+r(z):=~Jz[&+r’l“/2d$ = &[;+ {(;)’+ 1}”2]

If +,(z) is defined by ~,(z)=+(z) – ~,(z), then $, is the

integral of a smooth function and thus itself is smooth.
Since P(O) is readily computed, ~(z) can be computed

numerically for z greater than some minimum value Po.

The function r),(z) can be calculated for any z. Thus $.(z)

can be numerically evaluated for z >/3.. If ~, is smooth

and PO is :sufficiently small, $,(z) can be interpolated for

O<z </3.. Then, if ~r(z) is added to these interpolated

values of y),(z), 4(z) can be found for O<z <~o.

IV. NUMERICAL RESULTS

In this section, selected numerical results are presented.

For all results given here, it is assumed that an elliptic

aperture perforates the x = O wall of the cavity. This wall

containing the aperture is assumed to be an infinite planar

screen. Also note that all lengths are in units of wave-

length L

First consider the case of a relatively large cavity. For

this case a = 0.4, b = 0.6, and c = 1.3, which is larger than

the first several cavity resonances. The wire is centered in

the cavity (zl = 0.15, ZU= 1.15, XC= 0.2, yC = 0.3) and is

one-wavelength long with radius r = 0.001. The elliptic

aperture has semiaxes of 0.05 and 0.01 in the y and z

directions, respectively, and is located at Pa= (O, 0.2, 0.4).

The incident plane wave impinges from the – z direction

with a – =-directed electric field. Since the wire is of

resonant 1ength, one would expect to excite resonant

currents. Indeed, as shown in Fig. 3, this is the case.

Note that if one semiaxis of the aperture is much larger

than the other, the aperture begins to look like a short

slot. One would expect that the strongest coupling would

occur when the slot is perpendicular to the wire and the

incident e]ectric field is perpendicular to the slot. To test

this, consider a cavity with dimensions 0.7x 0.7X 0.8

(a, b, andc, respectively) with a one-half wavelength wire

of radius r = 0.001 which is located in the cavity at zl =

0.15, ZU= 0.65, XC= 0.35, and yC= 0.49. The aperture is

located at 7.=(0.0, 0.4, 0.4), and has semiaxes of 0.07 and

0.01. The plane wave is incident from the – Y direction

(normal to wall of aperture) and has a ~-directed electric

field.

Comide r two cases: that where the slot is perpendicular

to the incident electric field and that where the slot is
parallel to the incident electric field, that is, where the

major semiaxis of the aperture is in the y or z direction,

respectively. Fig. 4 shows the current excited upon the

wire for these two cases. It is readily seen that the current

excited when the slot is perpendicular to ~nc is approxi-

-lol,~.l
— I 15

z/A

Fig. 3. Currents excited on 1-A wire in 0.4-Ax 0.6-AX 1.3-)( cavity.

PERPENDICULAR

10

% *
~

‘6
~“
‘2
‘-u

A
A4
J-j
d’

2 REAL

- ~\

PARALLEL

.15 .65

Zlk

Fig. 4. Currents excited on 0.5-A wire for dot perpendicular
parallel to z- directed incident electric field.

and

mately twenty times larger than that excited when the slot

and ~ are parallel. For the same wire and excitation in

free space [18], the current magnitude peaks at approxi-

mately 3.6 mA. Thus, even for the perpendicular slot, the

shielding of the cavity reduces wire currents by approxi-

mately a factor of 350.

Finally, consider the case of a wire connected to the

cavity at one end. Fig. 5 shows the wire currents for this

case. The cavity size is 0.7X 0.8 X 0.8, and the wire axis is

at (x.,Y.) = (O.15, 0.5) with a wire radius r= 0.001. The
aperture is located at f.= (0.0, 0.3, 0.6), and its semiaxis in

the y and z directions are 0.07 and 0.01, respectively. The

plane wave is normally incident upon the aperture from

the – z direction, and the electric field is z directed. The

wire is connected at z = 0.8, and, as expected, the axial (z)

derivative of the current goes to zero at the wall. Also, as
expected, the current at the free end of the wire vanishes.

The current magnitude is on the order of 10 pA. For a

similar cavity and excitation but having a free wire (Fig. 4,

perpendicular slot), the current magnitude is also of this
order.
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Fig. 5. Current excited on 0.55-A wire which is attached to cavity watl
at one end.

Finally, it should be noted that in Figs. 3–5 the cur-

rents were computed both with and without the contribu-

tions of (p+, p+ ). In each case, these currents were

virtually indistinguishable, demonstrating the fact that

(P’ , ~+) can be ignored without significant error.

V. CONCLUDING REMARKS

It has been shown that physically reasonable numerical

solutions can be obtained for a variety of cavity/a-

perture/wire configurations. It should be noted, however,

that important comparisons between theory and experi-

ment must await the availability of experimental results

applicable to this problem. Such comparisons would dem-

onstrate the applicability of the modeling and the ac-

curacy of the solution.

In a more general sense, this work demonstrates that

the dyadic Green’s functions for the cavity can be success-

fully treated numerically, even in or near sources. This is

an important consideration in the numerical solution of

an integral equation since the proper treatment of the

kernel at its singularity is most crucial. These results will

hopefully encourage work on similar problems within a

cavity environment.
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