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Aperture Excitation of a Wire
in a Rectangular Cavity

DAVID B. SEIDEL, MEMBER, IEEE

Abstract—The problem of determining the currents excited on a wire
enclosed within a rectangular cavity is considered. The wire and cavity
interior are excited by electromagnetic sources exterior to the cavity which
couple to the cavity interior through a small aperture in the cavity wall. It
is assumed that the wire is thin, straight, and oriented perpendicular to one
of the cavity walls. An integral equation is formulated for the problem in
the frequency domain using equivalent dipole moments to approximate the
effects of the aperture. This integral equation is then solved numerically by
the method of moments. The dyadic Green’s functions for this problem are
difficult to compute numerically; consequently, extensive numerical analy-
sis is necessary to render the solution tractable. Sample numerical results
are presented for representative configurations of cavity, wire, and aper-
ture,

I. INTRODUCTION

N INVESTIGATION has been undertaken of the

problem of a wire inside a cavity which is excited by
an external source. The effects of this external source are
coupled to the cavity interior and wire through an aper-
ture in the cavity wall. The currents excited upon the wire
and the fields within the cavity are to be determined. This
boundary-value problem is an idealization of a wire in
some metal enclosure. As examples, the wire may be
inside the shielding or housing of an electronic or
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mechanical unit, or it might simply pass from one metal
partition to another through a region which is essentially
empty.

Previously, the shielding effects of infinite cylindrical
structures have been treated often, i.e., [1}, [2]. Recently,
the problems of penetration through an aperture into a
spherical cavity [3] and into a cylindrical cavity [4] also
have been considered. However, the author is not aware
of any previous work which treats the subsequent interac-
tion with scatterers (such as wires) within a cavity.

II. FORMULATION OF PROBLEM

For purposes of this problem, consider a perfectly con-
ducting rectangular cavity as shown in Fig. 1. One corner
of this cavity is located at the origin of a Cartesian
coordinate system. The dimensions of the cavity are de-
noted by a, b, and ¢, in the x, y, and z directions,
respectively. Within this cavity, there is a perfectly con-
ducting, round, thin wire of radius r (r<A) which is
assumed to be parallel to the z axis. The ends may or may
not be attached to either or both walls of the cavity.

One of the walls of the cavity is perforated by a small
aperture whose center is located at 7,=(x,,y,z,). The
exterior region to which the aperture couples the cavity
interior may be of two different types. The cavity may be
located behind an infinite, perfectly conducting, planar
screen such that the cavity wall containing the aperture is
a portion of the infinite screen. Alternatively, the cavity
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Fig. 1. Geometry for aperture-perforated rectangular cavity with inter-
ior wire.

may be situated in a free-space environment. In either
case, the excitation for the problem is provided by sources
in the exterior region.

Finally, it is assumed that the medium in both the
interior and exterior regions is homogeneous and isotropic
and is characterized by (e, 1) where € can be complex for a
lossy medium. It is assumed that the problem is time
harmonic with angular frequency w, and the factor &/*
has been suppressed throughout.

In order to formulate an integral equation for this
problem, it is necessary to know the Green’s functions for
the potentials and the fields within the interior, or cavity,
region. These Green’s functions are dyadic in nature and,
as one would expect, are singular in the source region. (As
a matter of notation in what follows, an uppercase G
denotes a dyad due to an electric current source; simi-
larly, a lowercase g denotes a dyad due to a magnetic
current source. The subscript 4, F, e, or h denotes the
particular potential or field which is given by the dyad.)

The dyadic Green’s function for the magnetic vector
poteatial is defined by

(V2+ k)G (7, 7F)=—T8(F—F) (1a)
Ax(kT+VV)-G,=0, (1b)

where k is the wavenumber of the homogeneous, isotropic
medium of the cavity interior, I is the identity dyad, and 7
is a inward-directed unit normal veetor on S where S is
the surface of the cavity. This Green’s dyad has been
derived by Tai and Rozenfeld [5] in terms of the vector

on S

(cc)x(s8)y(ss),= cos k,x cos k,x" sin k,y
- sin k,y’ sin k, z sin k,2’, etc.

na _ K2

mnl

=k2+ Kk} + k]

Once G, has been determined, the Green’s dyads for
the electric and magnetic fields due to an electric current
source can be found. They are defined by

G,= (kI +VV)-G, 3)
for the electric field and
G,=VxG, 4)

for the magnetic field. In matrix form, G, and G, can be
obtained by simply operating upon G, as prescribed by
(3) and (4). It should be noted that this result for G, agrees
with that derived by Tai and Rozenfeld [5] directly using
the vector wave functions. It also agrees with a similar
result obtained by Rahmat-Samii [6] if a minor sign error
in [6, (28)] is corrected.

It now remains to determine the dyadic Green’s func-
tion for the electric vector potential and its related field
dyads. Consider the Green’s dyad for the electric vector
potential defined by

(V24 K3)Z,(7, ) = — T8(F — F) (5a)
57 =0

TEPTTL o (5b)
AXVXgr=0

Rahmat-Samii [6] has obtained a solution for §F. It is
given in matrix form by

5 = L < €m€n€
8F= e m,,?;:O K2 —k?
(s8)x(cc)y(cc), 0 0
0 (cc)(s8),(cc), 0 .
0 0 (CC)x(CC)y(SS)Z
(6)

Again the sign error in [6, (26)] has been corrected.

Now that g is determined, the dyads for the electric
and magnetic fields due to a magnetic current source can
be defined by

wave functions L, M, and N and is given as a matrix by g.=-VXxg @)
= 1 x €€,/ (CC)x(SS)y(SS)Z 0 0
Ga= 2 i ’%:0 K2 — k2 0 (s8)x(cc)y(ss). (2)
ni=0 Lo 0 0 (55).(55)y (c0),

where
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and

z,=(KT+VV)gp. (8)
If g;e is written in matrix form, it is found that
§e(7, F)=—G (7, F) where the tilde denotes the transpose
of the dyad.

Before proceeding with the formulation of the integral
equation, it is worthwhile to consider a few of the general
properties of these dyadic Green’s functions. Probably the
most apparent property is that each component of each
dyad is in itself a triply infinite Fourier sum. Any one of
the sums can be performed analytically using one of the
following relationships:

S a
——— sink _x sink x'= 5————
ma1 K2+ o * * 2a sinh aa

-sinh ax_ sinh a(a—x-) (%a)
[e]

€ a
cos k. x cosk x' = ————
mgo k2+a? * * a sinh aa

-cosh ax_ cosh a(a—x,) (9b)

k, a
cosk x_sink x =z—7—
m=1 k2+a? < x™>  2sinh aa

-cosh ax_ sinh a(a—x) (9¢)

oC
. . —a
sink_x_cosk . x.==———3—
m2=1 24 o < x*>  2sinh aa
-sinh ax_ cosh a(a—x-) (9d)
where
ma

k.= - X<= min (x,x’)

X5, =max (x,x’), 0<x and x’ €a.

It should be noted that there can be no doubt as to the
completeness of the expansions for these dyadic Green’s
functions. This is because the dyads for the potentials are
each comprised of the solutions to three scalar equations,
for which completeness is known. The field dyads are also
necessarily complete, being related to the potential dyads
simply by differential operators. Term-by-term dif-
ferentiation of the potential dyads as indicated by (3), (4),
(7), and (8) is valid when 7#F [7]. When 7= F, the series
for both the potential and field dyads are necessarily
divergent.

Finally, note that the effect of a differential operator on
each term of any one of the sums is to introduce a
multiplicative factor of m, n, or / in the numerator. This
will slow the rate of convergence of the series. Thus, for
|F— 7|0, components of G, and g, will exhibit the most
rapid convergence, whereas G, and §,, which are con-
structed using the second-order differential operator VV -,
will exhibit the slowest convergence.
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In order to formulate the integral equation for this
problem, one applies the equivalence theorem and small-
aperture theory [8]. Thus the wire is replaced by an
equivalent surface current density (J,) and the aperture by
equivalent electric and magnetic dipoles (P, and P, re-
spectively) radiating in the presence of the shorted aper-
ture. This equivalence is depicted in Fig. 2. Note that in
this equivalent problem one has a cavity whose interior is
entirely homogeneous and isotropic and is driven by the
unknown sources J,, P,, and P,. Thus the fields in the
cavity may be obtained by simply taking the scalar prod-
ucts of the appropriate dyadic Green’s functions and these
sources and integrating over the volume of these sources.
Now the integral equation is obtained by enforcing the
boundary condition that the tangential electric field must
vanish on the wire surface.

Since the wire is thin, only the axial component of the
wire current need be considered, which can be assumed to
have negligible circumferential variation and to vanish at
an unattached end of the wire. Furthermore, it is
sufficient to enforce only the condition that the axial
component of the electric field vanish on the wire surface.
With these assumptions one obtains the integral equation

— 2 z, —
——fﬂ("— +k2) [ KG.2)1L()dz +2E(P)=0

k dz*
(10)
for 7 on the wire surface where
= 1 ﬂ = = ’
K(r,2')= 5;f_WGAH(r,r )ddp (11)
and
E(7)= Gy B4 jkng (7)Y By (12)

is the electric field produced by the aperture dipoles. In
(10) L(z")=2arJ,(2’) is the wire current and ="V p/e€ .
Note that if (10) can be inverted, a solution for 7, will
be obtained. However, it should be remembered that E’
contains P, and P, which still must be specified. Toward
that end consider an infinite, perfectly conducting screen
at z=0 which separates two half spaces of the same
properties (u,¢). This screen is perforated by a small
aperture centered about the point (0,0,0). If the aperture
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is sufficiently small and 7 is sufficiently far from the
aperture, then the fields at 7 due to the aperture can be
approximaled by the radiation from an electric dipole
with moment P, and a magnetic dipole with moment P,
located at (0,0, 0) which radiate in the presence of the
unperforated screen.

The moments of the electric and magnetic dipoles for
the right half space (z >0), which are located at (0,0,0%),
are given by

P, =ea,(E*~(0)~ E=*(0): (13a)

and

P,=—&, (H*~(0)— H**(0)) (13b)
where (E*°~,H*") are the short-circuit fields in the
left half space, that is, the fields in left half space in
the presence of the unperforated screen. Similarly,
(E**,H**) are the short-circuit fields in the right half
space. The electric polarizability «, and the magnetic
polarizability &, relate the specific excitation to the mo-
ments for a given aperture. Polarizabilities are available in
the literature [9]-[11] for several aperture shapes. It
should be noted that, where this small-aperture theory is
based upon an aperture coupling two half spaces, in the
actual problem of interest the interior region is a rectangu-
lar cavity and the exterior region may or may not be a
half space.

First, consider the exterior region. Suppose the cavity is
behind an infinite screen, such that the exterior region is
actually a half space. Then the short-circuit exterior fields
can be determined from a knowledge of the incident field
by application of physical optics. However, if the cavity is
not behind a perfectly conducting screen, it is necessary to
determine the short-circuit fields on the exterior surface of
a rectangular box scatterer. This problem has been solved
numerically by Tsai, Dudley, and Wilton [12]. Since the
short-circuit fields are related to the surface current and
charge by J =hAxH*~ and q,=ei-E*~, these values
could also be provided by experimental measurements of
surface charge and current densities. Note that
(E*~,H*7) and (E**,H*") have been defined for the
problem of interest to be the short-circuit fields in the
exterior and interior regions, respectively. For the re-
mainder of this paper it will be assumed that (E*~, H*™)
are known.

Now consider the interior region of the problem as
illustrated in Fig. 2b. The fields (E*°*, H*") are those
which are scattered back into the aperture by the wire and
the walls of the cavity. This can be ascertained by apply-
ing image theory to the cavity interior to obtain an equiv-
alent half-space problem and then properly indentifying
the imaged sources {13]. It turns out, however, that for
most cases these fields are negligible when compared to
the exterior short-circuit fields and consequently can be
disregarded. Only in situations where the cavity is very

911

near resonance or the aperture is very near the wire or an
adjacent cavity wall might those fields have significance.

I11.

Now that the integral equation (10) has been obtained,
one must find its solution numerically. An effective tech-
nique for obtaining such a solution is the method of
moments [14]. In this method, given the linear operator
equation Lu = f, one can approximate the unknown u by a
linear combination of a finite set of expansion functions
{u,} with unknown coefficients {a,}. Then, by choosing a
set of testing functions {w,} and defining an appropriate
inner product, one can obtain the following matrix equa-
tion from the original operator equation:

NUMERICAL SOLUTION

N
2 <wp’Luq>aq=<wp’f>5 p= 1*2" o 9]V'
1

q=

It has been shown [15] that for integro-differential
equations in the general form of (10), an efficient choice
of expansion and testing functions is that of pulse func-
tions and piecewise-sinusoidal functions, respectively. The
utility of this choice is that it requires only the computa-
tion of the integral portion of the operator and thus
eliminates the necessity of the subsequent computation of
the differential portion of the operator.

The only difficulty remaining is the computation of the
elements of the matrix equation. First, consider the com-
putation of the various Green’s functions in (2)-(4) and
(6)—(8) when F=F. As noted previously, each of these
Green’s functions can be reduced from a triple sum to a
double sum which can be shown to be exponentially
convergent for |F—F7|#0. Indeed, the asymptotic series
associated with any one of these exponentially convergent
series is of the form

-—k|z z|

§99 = 2 Sflm, n) (14)

where k3=(mw/a)2+(n7r/b)2,a=0,1,2, and f(m,n) is a
nonexponential function of m and n. Numerically, it is a
good general rule to reduce the triple sum in such a way
as to produce the double sum with the most rapid ex-
ponential convergence. Note that because this conver-
gence goes as |F— 7|, as one attempts to make this cora-
putation nearer and nearer the source, the series will
become more and more poorly convergent. Thus one
should expect to reach a point such that for |F— 7| less
than some minimum value (), numerical computation
of the sum in this fashion becomes unfeasible.

Due to the exponential convergence in the asymptotic
series, one would expect an efficient ordering of terms to
be in order of increasing k,. This takes advantage of the
exponential convergence as well as the k, in the de-
nominator. At this point, it is useful to partition the m—n
plane with successive curves [16]. If the partial sum of all
terms lying between two successive curves is called s,
then the double series can be converted into the single
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series of the form

S= S .

q

M8

=1

By the proper selection of these curves, the most efficient
ordering of terms can be determined. For this problem
such a choice would be that of ellipses with semiaxes
proportional to @ and b. Note that for such a choice, each
successive partition contains terms for which k, is larger
than in the preceding partition. Also note that since the
sum of terms in the gth partition is the ¢th term of a single
infinite series, methods used for determining the conver-
gence of single series can be applied.

It should be noted that extensive numerical testing
demonstrated that for cavities with dimensions on the
order of a wavelength A, the Green’s functions could
be easily obtained for values of |7— 7| greater than A/20
(By=A/20). Computations at even smaller values of |F—
7| are not impossible but rather more and more time
consuming.

Another computational difficulty is the evaluation of
the integral of the kernel (11) over the gth pulse-expansion
function of width A as given by

A7) = [, K(p2)d’

where z, is the centerpoint of the expansion function, Agq
is the interval (z,—5,2,+ %), (x.,y.) is the location of the
center of the wire, and 7, =(x,+r cos ¢, y,+r sin ¢,z,) is
a point on the wire surface such that z, is the centerpoint
of the pth testing function. When p = g, the integrand G,
of the integral over the tubular wire surface segment
diverges at 7,=7". Even for psgq, if p is near ¢, then the
integrand will converge poorly.

It is now useful to apply the reduced kernel approxima-
tion to (11), that is, assume that the current resides at the
center of the wire rather than upon its surface. This
approximation has been used successfully for wires in free
space, and, since the wire is thin and the cavity kernel and
free-space kernel differ only by a smooth, homogeneous
solution to (la),-the approximation is correspondingly
valid here. Note that by using this approximation, 7, ##
for all 7.

Using G, from (2) (reducing it to a double sum by
(9b)), applying the reduced kernel approximation to (11),
and using a hyperbolic trigonometric identity, one can
express (11) as the sum of two terms by

K(7,,z)=S8(z,— z/[)+ S(z,+2') (15)
where
2 & coshylc—p)
S(A)= ab m§=1 Y, sinh v,c Flxore)
ve=kit+k -k
and
F(x,,y.)= sin k x, sin k,x, sin k,y, sin k,y,.
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Because of the exponential convergence, the series can be
integrated term-by-term [7], and thus one obtains

A7) =0(z,—2,)+Q(z,+2,) (16)

where

a+A/2
B=a—1/2

P(B)
PR

a>A/2

Q(a)=

A/2—a

FP(BT a<asz

and where P(8) is the indefinite integral of S(8) given by

P(,B)=—% § sinh (¢ - B) (17)

. F(Xc’yc)’
mn=1 'Yg Slnh ch

Thus, if (17) can be evaluated for 8 >0, then 4 (7,) can be
evaluated on the wire using the reduced kernel.

It is interesting to observe that if the centerpoints of the
expansion and testing functions coincide and are uni-
formly spaced along the wire, (16) implies that the imped-
ance matrix will be the sum of the two matrices, one a
Toeplitz matrix and one a Hankel matrix. This has the
pleasant effect of substantially reducing the matrix fill
time.

Note that asymptotically P is of the following form :

*x e —kB
2
k.

, 0< B<e.

Because the hyperbolic sine is an odd function, P2c— f8)
= — P(f). Thus for B8 near zero or near 2¢, poor conver-
gence is expected. However, from a numerical standpoint
there exists a B,>0 such that for 8,< 8<2c— B, P(B)
can be calculated using the techniques described previ-
ously for (14).

For the special case when 8=0 (or 2¢), one can analyti-
cally perform one of the sums in (17) using (9a). The
resulting single sum is poorly convergent. However, its
convergence can be improved by removing its asymptotic
series termwise using the known sum formulation [17]

S e

n=1

X

COS HA = 3

1 1
5 In (cosh x — cos A\)— 5 In 2.

Thus one obtains
1 [oe]

P(0)=—— > sink,x, sin k x,
(g

| sinh v,y sinh y,(b—y.)
Y, sinh v, b

_ —1— e*ma
1k,
1 (cosha—cosﬁz)

D n ———— e &
87 cosh a —cos §3,

where a=mly, ~yl/a, By=mlx,—x|/a By=m(x, +
x.)/a, and v;=k?— k* Numerically, this sum is rapidly
convergent for nonvanishing wire radius r.

It is known that the reduced kernel (15) must contain

the singular portion of the free-space reduced kernel plus
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a smooth homogeneous function. Thus S(B) must also
contain that singularity. The functions y(z) and y,(z) are
defined as the integrals of S(8) and the singular portion
of the free-space reduced kernel, respectively:

¥(2)= [ S(B)dp= ()~ P(O)

o= ey o= (0]

If y,(z) is defined by y,(z2)=y(z)—y,(2), then y; is the
integral of a smooth function and thus itself is smooth.

Since P(0) is readily computed, (z) can be computed
numerically for z greater than some minimum value f3.
The function y,(z) can be calculated for any z. Thus ()
can be numerically evaluated for z>p,. If ¢, is smooth
and B, is sufficiently small, y,(z) can be interpolated for
0<z<B,. Then, if ¢,(z) is added to these interpolated
values of y,(z), ¢(z) can be found for 0 <z <p,,.

IV. NuMERricAL RESULTS

In this section, selected numerical results are presented.
For all results given here, it is assumed that an elliptic
aperture perforates the x =0 wall of the cavity. This wall
containing the aperture is assumed to be an infinite planar
screen. Also note that all lengths are in units of wave-
length A.

First consider the case of a relatively large cavity. For
this case a= 0.4, b= 0.6, and ¢= 1.3, which is larger than
the first several cavity resonances. The wire is centered in
the cavity (z;= 0.15, z,=1.15, x,= 02, y,= 0.3) and is
one-wavelength long with radius r= 0.001. The elliptic
aperture has semiaxes of 0.05 and 0.01 in the y and :z
directions, respectively, and is located at 7,=(0, 0.2, 0.4).
The incident plane wave impinges from the — 7 direction
with a — ¥-directed electric field. Since the wire is of
resonant length, one would expect to excite resonant
currents. Indeed, as shown in Fig. 3, this is the case.

Note that if one semiaxis of the aperture is much larger
than the other, the aperture begins to look like a short
slot. One would expect that the strongest coupling would
occur when the slot is perpendicular to the wire and the
incident electric field is perpendicular to the slot. To test
this, consider a cavity with dimensions 0.7X 0.7X 0.8
(a,b,and ¢, respectively) with a one-half wavelength wire
of radius r= 0.001 which is located in the cavity at z,=
0.15, z,= 0.65, x_= 0.35, and y_,= 0.49. The aperture is
located at 7,=(0.0, 0.4, 0.4), and has semiaxes of 0.07 and
0.01. The plane wave is incident from the — ¥ direction
(normal to wall of aperture) and has a Z-directed electric
field.

Consider two cases: that where the slot is perpendicular
to the incident electric field and that where the slot is
parallel to the incident electric field, that is, where the
major semiaxis of the aperture is in the y or z direction,
respectively. Fig. 4 shows the current excited upon the
wire for these two cases. It is readily seen that the current
excited when the slot is perpendicular to E'™ is approxi-

913

10 T T T T
REAL

%
= T ]
- IMAGINARY
2 0 ———m——
E\.LJ
~<
~N
3 -sf :

-0 | | | i

15 — 115

z/x

Fig. 3. Currents excited on 1-A wire in 0.4-A X 0.6-A X 1.3-A cavity.

12 T T T T

PERPENDICULAR
(0] o -

x15%)

L (2 E™ ()

REAL .

PARALLEL

1 | 1 I
15 85

—
z/\

Fig. 4. Currents excited on 0.5-A wire for slot perpendicular and
parallel to z- directed incident electric field.

mately twenty times larger than that excited when the slot
and E™ are parallel. For the same wire and excitation in
free space [18], the current magnitude peaks at approxi-
mately 3.6 mA. Thus, even for the perpendicular slot, the
shielding of the cavity reduces wire currents by approxi-
mately a factor of 350.

Finally, consider the case of a wire connected to the
cavity at one end. Fig. 5 shows the wire currents for this
case. The cavity size is 0.7 X 0.8 0.8, and the wire axis is
at (x,,y.)=(0.15, 0.5) with a wire radius r= 0.001. The
aperture is located at 7,=(0.0, 0.3, 0.6), and its semiaxis in
the y and z directions are 0.07 and 0.01, respectively. The
plane wave is normally incident upon the aperture from
the — ¥ direction, and the electric field is Z directed. The
wire is connected at z= 0.8, and, as expected, the axial (z)
derivative of the current goes to zero at the wall. Also, as
expected, the current at the free end of the wire vanishes.
The current magnitude is on the order of 10 pA. For a
similar cavity and excitation but having a free wire (Fig. 4,
perpendicular slot), the current magnitude is also of this
order.
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Fig. 5. Current excited on 0.55-A wire which is attached to cavity wall
at one end.

Finally, it should be noted that in Figs. 3-5 the cur-
rents were computed both with and without the contribu-
tions of (E**, H*"). In each case, these currents were
virtually indistinguishable, demonstrating the fact that
(E**, H**) can be ignored without significant error.

V. CoONCLUDING REMARKS

It has been shown that physically reasonable numerical
solutions can be obtained for a variety of cavity/a-
perture /wire configurations. It should be noted, however,
that important comparisons between theory and experi-
ment must await the availability of experimental results
applicable to this problem. Such comparisons would dem-
onstrate the applicability of the modeling and the ac-
curacy of the solution.

In a more general sense, this work demonstrates that
the dyadic Green’s functions for the cavity can be success-
fully treated numerically, even in or near sources. This is
an important consideration in the numerical solution of
an integral equation since the proper treatment of the
kernel at its singularity is most crucial. These results will
hopefully encourage work on similar problems within a
cavity environment.
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